Forklift Starters

Forklift Starters - A starter motors today is typically a permanent-magnet composition or a series-parallel wound direct current electrical motor together with a starter solenoid installed on it. As soon as current from the starting battery is applied to the solenoid, mainly via a key-operated switch, the solenoid engages a lever that pushes out the drive pinion that is situated on the driveshaft and meshes the pinion using the starter ring gear which is found on the flywheel of the engine.

The solenoid closes the high-current contacts for the starter motor, which begins to turn. Once the engine starts, the key operated switch is opened and a spring within the solenoid assembly pulls the pinion gear away from the ring gear. This particular action causes the starter motor to stop. The starter's pinion is clutched to its driveshaft by an overrunning clutch. This permits the pinion to transmit drive in only a single direction. Drive is transmitted in this particular manner via the pinion to the flywheel ring gear. The pinion remains engaged, for example in view of the fact that the driver did not release the key when the engine starts or if there is a short and the solenoid remains engaged. This causes the pinion to spin separately of its driveshaft.

The actions discussed above will prevent the engine from driving the starter. This significant step stops the starter from spinning really fast that it could fly apart. Unless modifications were made, the sprag clutch arrangement will preclude making use of the starter as a generator if it was made use of in the hybrid scheme mentioned prior. Usually an average starter motor is meant for intermittent use that will preclude it being used as a generator.

Hence, the electrical parts are designed to be able to operate for approximately less than 30 seconds to avoid overheating. The overheating results from very slow dissipation of heat because of ohmic losses. The electrical parts are intended to save cost and weight. This is actually the reason most owner's manuals used for automobiles recommend the driver to pause for at least ten seconds right after every ten or fifteen seconds of cranking the engine, whenever trying to start an engine that does not turn over instantly.

During the early 1960s, this overrunning-clutch pinion arrangement was phased onto the market. Previous to that time, a Bendix drive was used. The Bendix system operates by placing the starter drive pinion on a helically cut driveshaft. Once the starter motor begins spinning, the inertia of the drive pinion assembly enables it to ride forward on the helix, therefore engaging with the ring gear. Once the engine starts, the backdrive caused from the ring gear allows the pinion to go beyond the rotating speed of the starter. At this moment, the drive pinion is forced back down the helical shaft and thus out of mesh with the ring gear.

The development of Bendix drive was developed in the 1930's with the overrunning-clutch design known as the Bendix Folo-Thru drive, developed and introduced in the 1960s. The Folo-Thru drive consists of a latching mechanism along with a set of flyweights in the body of the drive unit. This was much better in view of the fact that the standard Bendix drive used to be able to disengage from the ring as soon as the engine fired, even if it did not stay running.

As soon as the starter motor is engaged and starts turning, the drive unit is forced forward on the helical shaft by inertia. It then becomes latched into the engaged position. When the drive unit is spun at a speed higher than what is achieved by the starter motor itself, like for example it is backdriven by the running engine, and after that the flyweights pull outward in a radial manner. This releases the latch and allows the overdriven drive unit to become spun out of engagement, thus unwanted starter disengagement can be prevented prior to a successful engine start.